Genetic variation in Drosophila melanogaster resistance to infection: a comparison across bacteria.

نویسندگان

  • Brian P Lazzaro
  • Timothy B Sackton
  • Andrew G Clark
چکیده

Insects use a generalized immune response to combat bacterial infection. We have previously noted that natural populations of D. melanogaster harbor substantial genetic variation for antibacterial immunocompetence and that much of this variation can be mapped to genes that are known to play direct roles in immunity. It was not known, however, whether the phenotypic effects of variation in these genes are general across the range of potentially infectious bacteria. To address this question, we have reinfected the same set of D. melanogaster lines with Serratia marcescens, the bacterium used in the previous study, and with three additional bacteria that were isolated from the hemolymph of wild-caught D. melanogaster. Two of the new bacteria, Enterococcus faecalis and Lactococcus lactis, are gram positive. The third, Providencia burhodogranaria, is gram negative like S. marcescens. Drosophila genotypes vary highly significantly in bacterial load sustained after infection with each of the four bacteria, but mean loads are largely uncorrelated across bacteria. We have tested statistical associations between immunity phenotypes and nucleotide polymorphism in 21 candidate immunity genes. We find that molecular variation in some genes, such as Tehao, contributes to phenotypic variation in the suppression of only a subset of the pathogens. Variation in SR-CII and 18-wheeler, however, has effects that are more general. Although markers in SR-CII and 18-wheeler explain >20% of the phenotypic variation in resistance to L. lactis and E. faecalis, respectively, most of the molecular polymorphisms tested explain <10% of the total variance in bacterial load sustained after infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The genetic basis for variation in resistance to infection in the Drosophila melanogaster genetic reference panel

Individuals vary extensively in the way they respond to disease but the genetic basis of this variation is not fully understood. We found substantial individual variation in resistance and tolerance to the fungal pathogen Metarhizium anisopliae Ma549 using the Drosophila melanogaster Genetic Reference Panel (DGRP). In addition, we found that host defense to Ma549 was correlated with defense to ...

متن کامل

Genotype-by-Environment Interactions and Adaptation to Local Temperature Affect Immunity and Fecundity in Drosophila melanogaster

Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history "balance" between immunity and other fitness traits in a constant environment. However, both local...

متن کامل

Genome-Wide Association Studies Reveal a Simple Genetic Basis of Resistance to Naturally Coevolving Viruses in Drosophila melanogaster

Variation in susceptibility to infectious disease often has a substantial genetic component in animal and plant populations. We have used genome-wide association studies (GWAS) in Drosophila melanogaster to identify the genetic basis of variation in susceptibility to viral infection. We found that there is substantially more genetic variation in susceptibility to two viruses that naturally infe...

متن کامل

Quantitative genetics of learning ability and resistance to stress in Drosophila melanogaster

Even though laboratory evolution experiments have demonstrated genetic variation for learning ability, we know little about the underlying genetic architecture and genetic relationships with other ecologically relevant traits. With a full diallel cross among twelve inbred lines of Drosophila melanogaster originating from a natural population (0.75 < F < 0.93), we investigated the genetic archit...

متن کامل

Genetic variation affecting host-parasite interactions: different genes affect different aspects of sigma virus replication and transmission in Drosophila melanogaster.

In natural populations, genetic variation affects resistance to disease. Knowing how much variation exists, and understanding the genetic architecture of this variation, is important for medicine, for agriculture, and for understanding evolutionary processes. To investigate the extent and nature of genetic variation affecting resistance to pathogens, we are studying a tractable model system: Dr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 174 3  شماره 

صفحات  -

تاریخ انتشار 2006